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Abstract

We describe the capabilities of the pyutilib.workflow software package. This package provides
Python classes that provide an intuitive interface for defining and executing scientific workflows.
Further, pyutilib.workflow is a native Python package, so it can be used to define workflows
within Python software applications. Additionally, pyutilib.workflow includes a utility for cre-
ating a command-line driver that execute workflows as subcommands of a command-line script.
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Chapter 1

Managing Scientific Workflows in Python
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1.1 Introduction

Scientific workflow is an increasingly popular strategy for managing complex scientific compu-
tation processes. Workflows allow scientists to automate data transformations, describe complex
computational procedures, and parallelize these analyses. Scientific workflow systems are closely
related to workflow models used in business process management systems. The key difference is
that scientific workflows focus on the transformation of data through algorithms, whereas business
workflows focus on scheduling and execution of tasks.

Many of the workflow packages developed in Python are best described as business work-
flow systems. For example, packages like django-workflows and zope.app.workflow provide
workflows for web content management. The following native Python workflow packages appear
to be suitable for scientific workflows:

• Pyphant: This is a framework for scientific data analysis. A computational analysis is de-
fined by a graph of processing steps, which is managed with a workflow engine.

• Python Workflow Engine: This is a simple workflow engine that was initially based on the
workflow engine used in the ACE project.

• Spiff Workflow: This package is designed around the workflow patterns defined at http://www.workflowpatterns.com.

• Ruffus: This is a lightweight python module to run computational pipelines (See http://www.ruffus.org.uk/).

• PaPy: A lightweight python package that manages parallel computational pipelines (see
http://muralab.org/PaPy/)

Other packages like VisTrails [4] and Weaver [1] also support the management of scientific work-
flows in Python, though they rely on external software packages to execute these workflows.

This report describes the pyutilib.workflow (PW) package, which supports the definition
and execution of scientific workflows. The following key features of PW that distinguish it from
other Python workflow tools:

• PW is a self-contained package that was designed to be used within other software applica-
tions. Although PW depends on several other PyUtilib Python packages, it does not rely on
external software packages to execute PW workflows.

• PW defines a workflow through the interaction of task objects, rather than an explicit defini-
tion of a workflow graph. For example, a connection between two tasks is created by setting
an output in one task equal to an input in the other.

• a PW workflow (or task) can be treated as a functor that executes with the given arguments
and returns a dictionary of computed data.
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• PW tasks can be created as plugin components that can be dynamically created with a task
factory. This supports the modular definition of tasks and workflows, and it allows the defi-
nition of workflows to be isolated from the definition of task classes.

• PW workflows can be initialized with command-line arguments. Further, PW includes a
command-line driver that can executed named workflows using a subcommand syntax that
is commonly used in command-line tools (e.g. svn).

The remainder of this manuscript provides a detailed description of the capabilities in PW.
We include many examples that illustrate how PW objects interact to define and execute work-
flows, and we discuss the command-line driver that can execute workflows with values specified
by command-line arguments.
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1.2 Managing Workflows

1.2.1 Overview

Figure 1.1 provides a graphical illustration of the components of a workflow. A workflow is com-
prised of one or more computational steps, which we call a task or component. A task maps a set of
input data into a set of output data. Input and output data are managed with port objects, and tasks
are linked together with connectors that define a connection from an output port in one task to an
input port for another. These connections form a directed acyclic graph (DAG), which defines how
task executions need to be coordinated to correctly execute the entire workflow.

Task1
Inputs

Outputs

Task3
Inputs

Outputs
Task2

Inputs

Outputs

Inputs
Task4

Inputs

Outputs

Figure 1.1. A graphical illustration of a workflow with four tasks.
Black lines between tasks represent connectors, and square boxes
in the tasks represent the input and output ports.
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1.2.2 A Simple Example

The main goal of PW is to support the definition of workflows in an intuitive manner using Python
objects. There are two fundamental classes defined by PW that are used to define a workflow:
Task and Workflow. A user defines tasks by creating subclasses of the Task class. For example,
the following task computes the sum of its two inputs:

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’)
self.inputs.declare(’y’)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = self.x + self.y

The Task class defines the inputs and outputs attributes that are used to respectively declare
input and output ports. These declarations must be included in the task constructor, since the inputs
and outputs are treated as static task properties by PW.

The task computation is performed by the execute method, which must be defined by the user.
Note that the input and output values are attributes of the task object. This simplifies the syntax
for users developing task computations by allowing them to treat task data as they would in any
other Python object. PW initializes the value of these attributes before calling execute, and it
interrogates the task afterwards to set the value of the output ports.

The following Python code creates the TaskA object, creates a Workflow object, initializes the
workflow with this task, and then executes the workflow with input values:

A = TaskA()
w = pyutilib.workflow.Workflow()
w.add(A)
print(w(x=1, y=3))

Note that the workflow defines a functor, which is executed with keyword arguments that are
mapped to the task inputs. This functor returns an Options object, which is a glorified Python dict
class. The output of printing the workflow results is:

z: 4
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1.2.3 Defining Connections

The previous example was a trivial illustration of the setup and execution of a workflow. In prac-
tice, workflows will be defined by constructing two or more tasks that are linked together. Suppose
we wish to compute the expression:

z = 2∗ x+ y.

We can employ TaskA to perform the sum, and the following task to double the value of x:
class TaskB(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’X’)
self.outputs.declare(’Z’)

def execute(self):
"""Compute the sum of the inputs."""
self.Z = 2*self.X

The following Python code creates the TaskA and TaskB objects, links the output of B to the
input of A, and then creates and executes a workflow:

A = TaskA()
B = TaskB()
A.inputs.x = B.outputs.Z

w = pyutilib.workflow.Workflow()
w.add(A)
print(w(X=1, y=3))

The connection between TaskA and TaskB is defined with the command
A.inputs.x = B.outputs.Z

The syntax transparently creates a Connector object that connects the Z output of TaskB to the x
input of TaskA. This greatly simplifies the declaration of connections when compared with other
Python workflow packages. Note that this mechanism allows an output port to be connected to
one or more input ports. The default setup of ports allows an input port to only connect to a single
output port. (See Section 1.2.4 for further discussion.)

As in our earlier example, the workflow is created by constructing a Workflow object and then
adding tasks to it. Note, however, that in this example only TaskA was added. The Workflow
object traverses the connections between tasks to identify all tasks connected to the task that is
added. Consequently, only a single task in a workflow needs to be added to the Workflow object.
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Note that the functor defined by the workflow has a slightly different API in this example; it
uses inputs X and y. To understand why, consider Figure 1.2, which shows the workflow in this
example. Tasks TaskA and TaskB are connected to each other, but also to a start and end task.
The start and end tasks are constructed when a Workflow object loads the workflow. The start
task contains outputs that correspond to every input port that is not connected to an output port.
Similarly, the end task contains inputs that correspond to every output port that is not connect to
an input port. In this way, the inputs and outputs of the workflow are automatically defined.

StartTask
Inputs

Outputs X y

Inputs X
TaskB

Outputs Z

TaskA
Inputs

Outputs z

x y

Outputs z

Inputs z
EndTask

p

Outputs

Figure 1.2. An illustration of the workflow defined with tasks
TaskA and TaskB.

To see further implications of this logic, suppose that TaskC is used instead of TaskB:
class TaskC(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’X’)
self.inputs.declare(’y’)
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Inputs
StartTask

Inputs

Outputs X y

TaskC
Inputs X y

I t

Outputs W Z

TaskA
Inputs

Outputs z

x y

EndTask
Inputs W z

Outputs

Figure 1.3. An illustration of the workflow defined with tasks
TaskA and TaskC.

self.outputs.declare(’W’)
self.outputs.declare(’Z’)

def execute(self):
"""Compute the sum of the inputs."""
self.W = self.X+self.y
self.Z = 2*self.W

Figure 1.3 shows the workflow for this example. The setup and execution of this task does not
change. However, the input y is now used by both tasks TaskA and TaskC. Further, the output W is
now included in the final results. The output of printing the workflow results is:

W: 4
z: 11
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Similarly, the following example uses TaskD instead of TaskB:
class TaskD(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’X’)
self.inputs.declare(’y’)
self.inputs.declare(’a’, constant=True)
self.outputs.declare(’W’)
self.outputs.declare(’Z’)

def execute(self):
"""Compute the sum of the inputs."""
self.W = self.X+self.y+self.a
self.Z = 2*self.W

The input a is a constant value that is not included in the outputs of the start task. However, this
value can be set directly using the TaskD object. The output of printing the workflow results is:

W: 104
z: 211

1.2.4 Input Ports with Multiple Connections

The action constructor option for the Port class defines how input connections are used to com-
pute the input value. The default action is store, which indicates that the connector value is stored
in the port. This behavior reflects the previous examples, and it is well-suited for workflows where
there is a direct correspondence between output ports and input ports.

However, contexts often arise in practice where a suite of tasks needs to be computed and their
results are analyzed together. For example, consider TaskD which generalizes TaskA to sum an
arbitrary number of inputs:

class TaskD(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’, action=’append’)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = sum(self.x)

Note that the input port x is defined with the append action, which configures it to create a list of
input values.

15



The following example use TaskD to define a workflow with inputs from TaskE, which gener-
ates a random integer value:

class TaskE(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’Y’)
self.outputs.declare(’Z’)

def execute(self):
"""Compute the sum of the inputs."""
self.Z = int(math.floor(self.Y/7.0))

D = TaskD()

# there is currently an issue with memory leaks and the workflow/task/port structure.
# to correct this issue in the interim, all tasks that are to be retained in memory
# (not garbage collected) should be referenced by the user. thus, the introduction of
# e_tasks. ultimately, the workflow should own a reference to all composite tasks.
e_tasks = []

for i in range(100):
E = TaskE()
e_tasks.append(E)
D.inputs.x = E.outputs.Z

w = pyutilib.workflow.Workflow()
w.add(D)
print(w(Y=100))

In this example, TaskE objects are created and connected to the TaskD object with the command:
D.inputs.x = E.outputs.Z

The input x port is configured to append inputs to a list, and no special syntax is needed to indicate
how the connections are configured between the x port and the Z ports.

The map action can also be specified to define an input as a dictionary with keys that are the
task ids from the connection that generated the values. For example, this can be used to associate
data generated in different branches of a workflow. The following example uses this associate to
define a dictionary, which is the final result:

class TaskF1(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’a’,)
self.inputs.declare(’aval’)
self.outputs.declare(’a’, self.inputs.a)
self.outputs.declare(’aval’, self.inputs.aval)

16



def execute(self):
pass

class TaskF2(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’A’,)
self.inputs.declare(’Aval’)
self.outputs.declare(’A’, self.inputs.A)
self.outputs.declare(’Aval’, self.inputs.Aval)

def execute(self):
pass

class TaskG(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’, action=’map’)
self.inputs.declare(’y’, action=’map’)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = {}
for key in self.x:

self.z[ self.x[key] ] = self.y[key]

F1 = TaskF1()
F2 = TaskF2()
G = TaskG()
G.inputs.x = F1.outputs.a
G.inputs.y = F1.outputs.aval
G.inputs.x = F2.outputs.A
G.inputs.y = F2.outputs.Aval

w = pyutilib.workflow.Workflow()
w.add(G)
print("IGNORE %s" % str(w(a=’a’, aval=1, A=’A’, Aval=2)))

Tasks TaskF1 and TaskF2 simply map their inputs to outputs. Their outputs are connected to two
inputs in TaskG, and these inputs are used to create a dictionary. The output of this computation is:

Options:
z = {’a’: 1, ’A’: 2}

Normally, an input port with the store, append or map action cannot be evaluated if any of
the output ports connected to it is not in the ready state. However, the store any, append any
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and map any actions allow any or all of the inputs to be in a non-ready state. When the store any
action is specified, the value is simply taken from the first connection that is in the ready state.
When the map any action is specified, then a dictionary is formed from all connections that are
in the ready state. Similarly, the append any action appends all values from connections inthe
ready state.

1.2.5 Using Workflows as Tasks

A key feature of PW is the ability to use workflows as components of other workflows. This is
possible because Workflow is a subclass of Task.

For example, consider the following workflows that are defined with TaskA and TaskC:
A = TaskA()
C = TaskC()
A.inputs.x = C.outputs.Z

w1 = pyutilib.workflow.Workflow()
w1.add(A)

AA = TaskA()
AA.inputs.x = w1.outputs.W
AA.inputs.y = w1.outputs.z

w2 = pyutilib.workflow.Workflow()
w2.add(AA)

print(w2(X=1, y=3))

Workflow w1 is the workflow defined in the previous example. This object is used to define work-
flow w2, which uses TaskA to sum the outputs of w1: W and z. The output of executing w2 is

z: 15

1.2.6 Initializing Port Values

Task ports are initialized through the execution of a workflow, and through the explicit specification
of port values. The simplest way to specify port values is to define them directly. For example,
consider the following variation of the example in Section 1.2.2:

A = TaskA()
w = pyutilib.workflow.Workflow()
w.add(A)
A.inputs.x = 1
A.inputs.y = 3
print(w())

18



The workflow is constructed as before, but the values of ports x and y are defined explicitly, and
the execution of the workflow does not specify these values.

PW also supports the initialization of port values with command-line options. The goal of this
capability is to facilitate the use of PyUtilib in command-line applications, by allowing command-
line options to be used to directly initialize a workflow. The following example is a simple exten-
sion of the example in Section 1.2.2.

class TaskAA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’)
self.inputs.declare(’y’)
self.add_argument(’--x’, dest=’x’, type=int)
self.add_argument(’--y’, dest=’y’, type=int)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = self.x + self.y

AA = TaskAA()
w = pyutilib.workflow.Workflow()
w.add(AA)
w.set_options([’--x=1’, ’--y=3’, ’--bad=4’])
print(w())

Some additional logic is added to the TaskAA class to specify the command-line options. In this ex-
ample, the set argument method is used to initialize a workflow with a list of option strings. This
syntax mimics the format of data provided by sys.argv. Again, the execution of the workflow
does not specify these values.

Note that port values specified in these ways are viewed as default values for the port. When
a port value is computed from input connections, then the port value will be overriden if the input
connections provide a non-trivial value. For example, if the port action is store, then the value
will be overriden if the input connection has a value other than None. Similarly, if the port action
is append or map, then the value will be overriden if one or more of the input connections are not
None.

Additionally, port values are redefined by the workflow keyword options. For example, in the
following script we initialize input ports for TaskAA, which are then redefined when the workflow
is executed:

AA = TaskAA()
w = pyutilib.workflow.Workflow()
w.add(AA)
w.set_options([’--x=1’, ’--y=3’])
print(w(y=4))
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The output of this script is
z: 5

which reflects the fact that the value of y was redefined by the workflow keyword option.

1.2.7 The Task Factory

PW leverages the PyUtilib Component Architecture [3] to support the definition of a task factory.
The PW task factory allows users to create plugin tasks on the fly without requiring knowledge of
where these tasks are defined. This capability exposes a variety of standard tasks that are defined
in PW , and it can be used to create tasks that are defined by third-party libraries in a standard
manner.

The TaskFactory object defined in PW is a functor. This functor can be used to create a task
that has been registered as a plugin. For example, the Selection Task class is registered with the
string ’workflow.selection’, and it can be instantiated as follows:

task = pyutilib.workflow.TaskFactory(’workflow.selection’)

Section 1.5 describes the predefined tasks that are provided with PW.

A plugin task is created as a subclass of the TaskPlugin class. This registers this task as a
plugin with the PyUtilib Component Architecture. The only additional step required for a plugin
task is to use the alias declaration to define the string that is used to create this task in the task
factory.

For example, the following code defines the task PluginTaskA that is registered with the string
’TaskA’:

class PluginTaskA(pyutilib.workflow.TaskPlugin):

pyutilib.component.core.alias(’TaskA’)

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’)
self.inputs.declare(’y’)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = self.x + self.y

Note that the only difference with the definition of TaskA is the specification of the base class and
the alias declaration.
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The following Python code creates the PluginTaskA object, creates a Workflow object, ini-
tializes the workflow with this task, and then executes the workflow with input values:

A = pyutilib.workflow.TaskFactory(’TaskA’)
w = pyutilib.workflow.Workflow()
w.add(A)
print(w(x=1, y=3))

This has the same logical steps as the example in Section 1.2.2. The only difference is that the task
is created by the task factory.

1.3 Control Flow Tasks

The basic functionality provided by PW can be characterized as a data flow. Each task represents
a transformation of data in input ports to data in output ports. These tasks are networked together
in a data flow graph, in which tasks form a directed acyclic graph where data flows from the start
task(s) to the final task(s).

PW extends this functionality by providing control flow logic. Tasks include special ports,
input and output control ports that can be used to limit the execution of tasks. An output control
port is connected to one or more input control ports. If an output control port is set to the ready
state, then the tasks connected to this with an input control port can be executed. Otherwise, these
tasks are blocked until the output control port changes state.

For example, the Selection Task class is a predefined task whose inputs are a dictionary,
data, and an indexing value, index. This task returns selection, which is simply the value
data[index]. This task can be used to switch the execution based on the indexed value. For
example:

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’)
self.inputs.declare(’y’)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = self.x + self.y

B = pyutilib.workflow.TaskFactory(’workflow.selection’)
A = TaskA()
A.inputs.x = B.outputs.selection
w = pyutilib.workflow.Workflow()
w.add(B)
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print(w(index=’a’, y=100, data={’a’:1, ’b’:2}))
w.reset()
print(w(index=’b’, y=100, data={’a’:1, ’b’:2}))

This generates the following output:
z: 101
z: 102

The Switch Task class is a predefined task that provides a similar functionality in this example.
However, rather than switching the data value, this class switches the control flow for downstream
tasks. For example:

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’, constant=True)
self.inputs.declare(’y’)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = self.x + self.y

class TaskZ(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’z’, action=’store_any’)
self.outputs.declare(’z’, self.inputs.z)

def execute(self):
pass

B = pyutilib.workflow.TaskFactory(’workflow.switch’)
A1 = TaskA()
A1.inputs.x = 1
B.add_branch(’a’, A1)
A2 = TaskA()
A2.inputs.x = -2
B.add_branch(’b’, A2)
Z = TaskZ()
Z.inputs.z = A1.outputs.z
Z.inputs.z = A2.outputs.z
w = pyutilib.workflow.Workflow()
w.add(B)

print("Branch a")
print(w(value=’a’, y=100))
w.reset()
print("Branch b")
print(w(value=’b’, y=100))
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This generates the following output:
Branch a
z: 101
Branch b
z: 98

The Branch Task class provides a simpler version of the same process executed by the Switch Task
class. This class switches the control flow for two downstream tasks. For example:

x: -1

Here, the branches for TaskA and TaskB are specified with a branch value that is a boolean.

1.4 Defining Task Resources

There are many contexts in which task execution is dependent on the availability of external re-
sources. For example, data files may need to be available, a database may need to be unlocked,
or a software license may need to be free. PW allows these constraints on workflow execution to
be represented with Resource objects that represent the state of a dependent resource. A resource
may or may not be available, and the workflow can lock and unlock a resource as it employs it for
execution.

PW defines the ExecutableResource, which allows a user to specify an executable that is
automatically found by searching the PATH environment. If the specified executable is not found,
then it is unavailable for execution in a workflow. This resource also includes a utility method for
applying this executable with command-line arguments.

The following example illustrates the use of this resource to define a task that lists all of the
files in a specified directory:

class TaskH(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’dir’)
self.outputs.declare(’list’)
self.add_resource(pyutilib.workflow.ExecutableResource(’ls’))

def execute(self):
self.resource(’ls’).run(self.dir, logfile=currdir+’logfile’)
self.list = []
INPUT = open(currdir+’logfile’,’r’)
for line in INPUT:

self.list.append( line.strip() )
INPUT.close()
self.list.sort()
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H = TaskH()
w = pyutilib.workflow.Workflow()
w.add(H)
print(w(dir=currdir+’dummy’))

A key role of resource objects is that they can limit the execution of tasks. The availability
method in a resource object is queried to see if a resource can be allocated. The following example
illustrates this functionality with a simple BusyResource class that is busy the first time it is
queried:

from pyutilib.workflow import *

class BusyResource(Resource):

def __init__(self, name=None):
resource.Resource.__init__(self)
self._counter = 1

def available(self):
if self._counter > 0:

print("BUSY %d" % self._counter)
self._counter -= 1
return False

return True

class TaskA(pyutilib.workflow.Task):

def __init__(self, *args, **kwds):
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’)
self.outputs.declare(’x’, self.inputs.x)

def execute(self):
pass

A = TaskA()
A.add_resource(BusyResource())
w = pyutilib.workflow.Workflow()
w.add(A)

The first time that task A is queried, this resource is not available. Note that the PW workflow
execution process currently does not allow tasks to block indefinitely. If all tasks have blocked,
then the workflow execution will immediately terminate.

1.5 Predefined Tasks

The following sections describe the task plugins that are defined by PW, and we provide an example
of how a task plugin is defined.
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1.5.1 Selection Task

The workflow.selection task has the following inputs:

• data: a dictionary

• index: an index key in the dictionary

This task returns the value of the dictionary with the specified index key.

Note that this task does not fail gracefully if the index key is not defined in the dictionary. An
exception will occur that will terminate the execution of the workflow.

1.6 The Task Driver

The PW task driver provides a facility for creating a command-line utility that can execute PW
plugin tasks. The task driver is inspired by command-line tools like svn that allow users to specify
subcommands that have independent command-line arguments. The PW task driver can be eas-
ily configured to execute different tasks and workflows as subcommands within a command-line
application.

Consider the following two task classes:
class PluginTaskZ(pyutilib.workflow.TaskPlugin):

pyutilib.component.core.alias(’TaskZ’)

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)
self.inputs.declare(’x’)
self.inputs.declare(’y’)
self.add_argument(’--x’, dest=’x’, type=int)
self.add_argument(’--y’, dest=’y’, type=int)
self.outputs.declare(’z’)

def execute(self):
"""Compute the sum of the inputs."""
self.z = self.x + self.y

class PluginTaskY(pyutilib.workflow.TaskPlugin):

pyutilib.component.core.alias(’TaskY’)

def __init__(self, *args, **kwds):
"""Constructor."""
pyutilib.workflow.Task.__init__(self, *args, **kwds)

25



self.inputs.declare(’X’)
self.inputs.declare(’Y’)
self.add_argument(’--X’, dest=’X’, type=int)
self.add_argument(’--Y’, dest=’Y’, type=int)
self.outputs.declare(’Z’)

def execute(self):
"""Compute the sum of the inputs."""
self.Z = self.X * self.Y

Note that these are plugin tasks that can be created with the TaskFactory functor. The PW task
driver can only execute tasks and workflows that are defined as plugins.

Suppose that the TaskZ and TasY are defined in the file task yz.py. The following script
creates a task driver, activates two these two tasks and illustrates the results of parsing two sets of
command-line arguments:

import tasks_yz

driver = pyutilib.workflow.TaskDriver()
driver.register_task(’TaskZ’)
driver.register_task(’TaskY’)

print(driver.parse_args([’TaskZ’,’--x=3’,’--y=4’]))
print(driver.parse_args([’TaskY’,’--X=3’,’--Y=4’]))

However, the true value of the task driver is in the definition of a command-line utility. For exam-
ple, the following script defines a command-line utility that can execute tasks TaskZ and TaskY:

import pyutilib.workflow
import tasks_yz

driver = pyutilib.workflow.TaskDriver()
driver.register_task(’TaskZ’)
driver.register_task(’TaskY’)

print(driver.parse_args())

This script creates the task driver and then parses the sys.argv command-line arguments. Suppose
that this script is in the file driver1.py. Then the following command-line illustrates the execution
of task TaskZ:

python driver1.py TaskZ --x=3 --y=4

which generates the following output:
z: 7

The task driver constructor includes several options for declaring the script name and associated
documentation that will be printed when the --help option is specified:
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• prog - The name of the script.

• description - A short description of the script’s functionality.

• epilog - Additional documentation that is printed after the command-line options are de-
scribed.

The following script uses these options to illustrate the help information that is printed by the task
driver:

import pyutilib.workflow
import tasks_yz

driver = pyutilib.workflow.TaskDriver(prog=’myprog’,
description=’This is the description of this task driver’,
epilog="""**********************

This is more text
that describes this command driver. Note

that the format of the epilog string is preserved in the
help
output!
**********************
""")
driver.register_task(’TaskZ’)
driver.register_task(’TaskY’)

print(driver.parse_args())

Suppose that this script is in the file driver2.py. Then the following command-line illustrates the
execution with the --help option:

python driver2.py --help

which generates the following output:
usage: myprog [-h] {TaskY,TaskZ} ...

This is the description of this task driver

positional arguments:
{TaskY,TaskZ} Sub-commands
TaskZ
TaskY

optional arguments:
-h, --help show this help message and exit

**********************
This is more text
that describes this command driver. Note

that the format of the epilog string is preserved in the
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help
output!
**********************

Furthermore, the --help option can be used to print information about a specific subcommand.
The command

python driver2.py TaskZ --help

generates the following output:
usage: myprog TaskZ [-h] [--x X] [--y Y]

optional arguments:
-h, --help show this help message and exit
--x X
--y Y
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1.7 Discussion

A major driver for the development of the PW is the TEVA-SPOT Toolkit [2], which supports
research on sensor placement optimization for water security applications. TEVA-SPOT uses the
PW task driver to define the sptk script, which can execute a variety of different workflows that
represent different strategies for sensor placement optimization.

The fact that PW provides a self-contain facility for defining and executing workflows is par-
ticularly important for TEVA-SPOT. This code is targeted for distribution on desktop computers,
and PW provides a convenient mechanism for flexibly developing new sensor placement strategies
that can be executed without a cumbersome workflow management system. Parallel execution of
PW workflows is a natural extension of the current capability, which would not require a signficant
extension of the current class definitions and workflow syntax.

Finally, here are some notes concerning the current status of development in PW:

• PW includes a variety of methods managing parsers used to initialize tasks. These methods
were intended to simplify the setup of commands using workflows. However, these methods
have not proven terribly useful in practice. Consequently, we could imagine deprecating this
feature of PW unless clear use cases arise.

• The PW execution logic is simply a method of the Workflow class. It would be worth explor-
ing how this could be generalized to (a) support threaded parallelism and (b) interface with
third-party grid- or cloud- computing workflow engines. This would provide a nice extensi-
bility of this capability while preserving the simple Pythonic interface that PW provides.

• A preliminary resource class for files has been developed, but simple use-cases for this class
have not been flushed out.

• Control flow tasks for looping and other more advanced capabilities are not currently pro-
vided, but these will probably be developed as the need arises.
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